Stability and Singularities of Relative Hypersurfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stringy E-functions of hypersurfaces and of Brieskorn singularities

We show that for a hypersurface Batyrev’s stringy E-function can be seen as a residue of the Hodge zeta function, a specialization of the motivic zeta function of Denef and Loeser. This is a nice application of inversion of adjunction. If an affine hypersurface is given by a polynomial that is non-degenerate with respect to its Newton polyhedron, then the motivic zeta function and thus the stri...

متن کامل

Hypersurfaces and Their Singularities in Partial Correlation Testing

An asymptotic theory is developed for computing volumes of regions in the parameter space of a directed Gaussian graphical model that are obtained by bounding partial correlations. We study these volumes using the method of real log canonical thresholds from algebraic geometry. Our analysis involves the computation of the singular loci of correlation hypersurfaces. Statistical applications incl...

متن کامل

DESSINS D’ENFANTS AND HYPERSURFACES WITH MANY Aj-SINGULARITIES OLIVER LABS

We show the existence of surfaces of degree d in È 3 () with approximately 3j+2 6j(j+1) d 3 singularities of type A j , 2 ≤ j ≤ d − 1. The result is based on Chmutov's construction of nodal surfaces. For the proof we use plane trees related to the theory of Dessins d'Enfants. Our examples improve the previously known lower bounds for the maximum number µ A j (d) of A j-singularities on a surfac...

متن کامل

DESSINS D’ENFANTS AND HYPERSURFACES WITH MANY Aj-SINGULARITIES OLIVER LABS

We show the existence of surfaces of degree d in È 3 () with approximately 3j+2 6j(j+1) d 3 singularities of type A j , 2 ≤ j ≤ d − 1. The result is based on Chmutov's construction of nodal surfaces. For the proof we use plane trees related to the theory of Dessins d'Enfants. Our examples improve the previously known lower bounds for the maximum number µ A j (d) of A j-singularities on a surfac...

متن کامل

Milnor Numbers of Projective Hypersurfaces with Isolated Singularities

Let V be a projective hypersurface of fixed degree and dimension which has only isolated singular points. We show that, if the sum of the Milnor numbers at the singular points of V is large, then V cannot have a point of large multiplicity, unless V is a cone. As an application, we give an affirmative answer to a conjecture of Dimca and Papadima.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2015

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnv158